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Localized Ranking in Social and Information Networks∗

Joyce Jiyoung WHANG†a), Member and Yunseob SHIN††, Nonmember

SUMMARY In social and information network analysis, ranking has
been considered to be one of the most fundamental and important tasks
where the goal is to rank the nodes of a given graph according to their
importance. For example, the PageRank and the HITS algorithms are well-
known ranking methods. While these traditional ranking methods focus
only on the structure of the entire network, we propose to incorporate a
local view into node ranking by exploiting the clustering structure of real-
world networks. We develop localized ranking mechanisms by partitioning
the graphs into a set of tightly-knit groups and extracting each of the groups
where the localized ranking is computed. Experimental results show that
our localized ranking methods rank the nodes quite differently from the tra-
ditional global ranking methods, which indicates that our methods provide
new insights and meaningful viewpoints for network analysis.
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1. Introduction

Social and information networks can be modeled as graphs
where a node represents an individual or a web page, and an
edge represents a social relationship between the individu-
als or a hyperlink between the web pages. It has been known
that each node in a graph plays a different role (or a different
level of importance) depending on the node’s position in the
network [1]. To measure the importance of nodes in a net-
work, a number of centrality measures (e.g., the between-
ness centrality [2]) and ranking algorithms have been pro-
posed. Among those, the HITS algorithm [3] and the PageR-
ank method [4] have been considered to be most successful
methods. These methods rank the nodes in a graph by as-
signing a particular value to each node and repeatedly updat-
ing the values until convergence by considering the structure
of the entire network.

While this global view is one that should be considered
to evaluate the importance of the nodes, we can have deeper
understanding of node centrality by also considering a local
structure of the network. Based on the fact that real-world
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social networks and information networks can be decom-
posed into a set of densely connected subgraphs, we propose
the localized ranking algorithms. By partitioning the graphs
using graph clustering algorithms, we extract a set of tightly-
knit groups from a network and compute localized ranking
by only focusing on each of the extracted group. The exper-
imental results show that the localized ranking is quite dif-
ferent from the global ranking, which indicates that our lo-
calized ranking mechanisms provide meaningful viewpoints
for network analysis.

There have been several studies which incorporate the
clustering structure of networks into centrality computation
or ranking methods. In [5], the local and the community
centrality methods have been proposed, and we note that the
local centrality is closely related to our localized ranking
even though [5] considers the closeness and the between-
ness centrality measures whereas we focus on extending
node ranking algorithms such as the HITS and the PageRank
methods. Also, we consider the node ranking problem for
bipartite graphs while [5] focuses on computing the shortest-
path-based centrality measures on unipartite graphs. On the
other hand, [6] utilizes the local and global social context
for recommender systems. In [7], the HITS algorithm is
modified to produce customized authority lists by incorpo-
rating users’ feedback while a context-sensitive PageRank
algorithm has been proposed in [8]. While these methods
propose to extend the traditional ranking algorithms by aug-
menting additional information, our method exploits the in-
herent clustering structure of real-world networks.

We develop our own web crawlers to collect real-world
data from the web. We describe our datasets in Sect. 2. Our
main algorithms are described in Sect. 3 and the experimen-
tal results are shown in Sect. 4. We present our conclusions
and future work in Sect. 5.

2. Web Crawling

We develop web crawlers to construct our own datasets by
collecting link information among objects from the web.
First, we consider a social network by crawling data from
Facebook (www.facebook.com). On Facebook, users can
make friendship relationships with each other, and the users
can follow a page which is a small online community that
contains information (or advertisements) on a specific topic
or product, e.g., an entertainer’s page. We can model the
Facebook data as a bipartite graph where two different types
of nodes exist – one for an individual and the other for page.
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By looking at the friendship relationships among the
users, we can construct a social network. Note that the
edges between the users are undirected, i.e., the friendship
relationship is symmetric. Given an ego node, we con-
duct a breadth-first search up to two-hop distant nodes from
the ego node. As a result, we get 128,821 individuals and
4,333,884 edges between the individuals in our dataset. Let
Gs = (Vs,Es) denote this graph whereVs denotes the set of
individuals and Es denotes the set of edges between them.

On the other hand, we can also add edges between the
users and the pages by looking at which user follows which
page. These edges are directed edges because only users
can follow the pages, whereas the pages are not allowed to
follow the users on Facebook. We create nodes for the pages
that receive at least one link from the users included in Gs.
As a result, we get 1,367,333 nodes for the pages and there
are 7,649,773 edges between the users and the pages.

Second, we consider an information network by pars-
ing the link structure between web pages inside Namuwiki
(www.namu.wiki) which can be considered as a Korean
version of Wikipedia. In the Namuwiki web site, we ex-
tract a subset of the web pages and construct a subgraph in-
duced by the extracted web pages by parsing the hyperlink
information between the web pages. In our dataset, we have
303,221 web pages and there are 8,392,018 edges between
them. This can be modeled as a directed graph where each
web page corresponds to a node and a hyperlink from a page
to another is represented as a directed edge.

3. Localized Ranking

We can decompose a graph into smaller dense groups by
graph clustering. If the underlying graph has a modular
structure, each cluster might be separable from the rest of
the graph. Within each of these separable groups, the nodes
can be differently ranked from the case where we compute
the ranking by considering the entire network. Based on this
idea, we define two localized ranking methods.

3.1 Graph Partitioning

It has been known that social networks and information
networks have clustering structures [1]. That is, these net-
works can be decomposed into a set of smaller cohesive
subgroups where the nodes inside each group are densely
connected with each other. Such a subgroup is also called
as a cluster in a graph. By applying graph clustering algo-
rithms such as Graclus [9] or GEM [10] for larger networks,
we can partition a given graph into a set of clusters. For-
mally, given a graph G = (V,E), a set of k clusters for
the graph can be represented as V1,V2, · · · ,Vk such that
V = V1 ∪ V2 ∪ · · · ∪ Vk and ∀i � j Vi ∩ Vj = ∅ where
k is the number of clusters. When we consider clustering
a social network, each cluster corresponds to a tightly-knit
group which can be interpreted as a community or a social
circle [11].

Fig. 1 Localized ranking.

3.2 Localized Hubs and Authorities

The well-known HITS algorithm [3] is a traditional link
analysis algorithm for ranking web pages. The main idea
of the algorithm is that if a web page x includes a link to
a web page y, then it is considered that the page x confers
‘authority’ on y. Two scores are computed within the al-
gorithm – hubs and authorities. A hub score of a node x
is computed by adding all the authority scores of the pages
that the page x points to, whereas an authority score of a
node y is computed by adding the hub scores of the pages
that point to y. If a node has a high hub score, it indicates
that the node points to the pages that are also pointed by
many other pages. On the other hand, if a node has a high
authority score, it indicates that the node receives links from
many good hubs.

Let us consider our Facebook dataset which we de-
scribed in Sect. 2. When we focus on the edges between
the users and the pages on Facebook, we can compute the
hub scores for the users and the authority scores for the
pages. Here, we assume that the users confer authorities
on the pages by following the pages. Then, the pages with
high authorities can be interpreted as the pages that are most
popular and reliable pages, and thus we might want to rec-
ommend those pages to the Facebook users. However, these
global hubs and authorities, i.e., the scores that are com-
puted based on the structure of the entire network, might fail
to capture a local structure around a user, and thus cannot
provide the users with the optimal recommendations. When
we consider a personalized recommendation for each user,
an individual might want to follow a page that his or her
close friends also follow. Based on this intuition, we com-
pute the localized hubs and authorities by extracting a sub-
graph for each cluster. First, we partition the social network
Gs into k clusters by applying the Graclus graph partitioning
method [9]. Then, for each cluster, we extract the pages that
receive at least one link from the users inside the cluster. Fi-
nally, we compute the hubs and authorities on this subgraph.
Figure 1 (a) shows a toy example of a subgraph induced by
a cluster.
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3.3 Localized PageRank

While the HITS algorithm computes two different scores for
the nodes, the PageRank algorithm [4] computes one score
for every node in a graph. The PageRank value of each
web page indicates the importance of the corresponding web
page. Starting with the uniform PageRank values for all the
nodes in a graph, it is assumed that the PageRank value of
a node is evenly divided into each of its out-going links and
the new PageRank of a node is computed by adding all the
PageRank values that its incoming neighbors confer. By ap-
propriate scaling and normalization, it can be shown that
the PageRank vector converges to the left eigenvector of the
Google matrix with eigenvalue one [4].

Let us consider our Namuwiki dataset described in
Sect. 2. When we simply compute the PageRank on this
dataset, we are able to compute the global PageRank rank-
ing which considers the link structure of the entire hyperlink
graph. Now, if we recall the concept of clusters, we note that
we can group the web pages such that each group contains
a set of highly-correlated web pages. Then, one might be
more interested in ranking nodes within each group to iden-
tify a set of highly ranked web pages within each cluster that
might consist of web pages on similar topics. To compute
this localized PageRank, we first partition the Namuwiki
graph into several clusters, and extract an induced subgraph
for each cluster. Then, we compute the localized PageR-
ank on the subgraph for each cluster. Figure 1 (b) shows an
example of the induced subgraph for a cluster.

4. Comparison with the Global Ranking

We define two different localized ranking schemes in Sect. 3.
If the scores or the ranking derived by the localized ranking
methods are different from the global scores or the global
ranking, it implies that the localized ranking provides us
with meaningful information that the traditional global rank-
ing methods fail to capture. Thus, we conduct experiments
with our real-world datasets introduced in Sect. 2 to investi-
gate whether the traditional global ranking and the localized
ranking are different or not. Since we compute the local-
ized scores for each cluster, we compare these scores with
the normalized global scores. That is, for each cluster, we
extract the global scores for the nodes that belong to the
cluster, and normalize the global scores for those nodes so
that the sum of within-cluster global scores becomes to one.
Also note that the sum of the localized authorities (or the
localized PageRank values) is also one.

We visualize the global authority and the localized au-
thority rankings for cluster#55 on the Facebook dataset in
Fig. 2†. A darker color indicates a higher rank. In the ex-
tracted cluster, there are 18 users and 1381 pages, and we
represent the users using the lightest color in the figure since
those nodes do not have the authority scores. In Fig. 2, it is

†We draw Fig. 2 and Fig. 3 using Gephi (https://gephi.org/).

Fig. 2 Global and localized authorities on Facebook.

Fig. 3 Localized and personalized PageRank on Namuwiki.

interesting to see that when we rank the nodes by the lo-
calized authority scores, similarly ranked nodes are closely
located with each other in Fig. 2 (b) whereas we cannot see
this pattern in the global authority ranking in Fig. 2 (a).

We compare our localized PageRank with a person-
alized PageRank (PPR) [8]. In Fig. 3 (a), we visualize the
ranking of the nodes in cluster#23 on the Namuwiki dataset
according to the localized PageRank scores (a darker color
indicates a higher rank). The localized PageRank repre-
sents the importance of each web page by only consider-
ing the link structure among the closely related web pages.
While the localized PageRank method computes the PageR-
ank scores within each cluster, the PPR method computes
a biased PageRank vector for each node. Thus, in PPR,
we should specify a particular personalization vector, and a
different personalization vector yields a different ranking as
shown in Fig. 3 (b) and Fig. 3 (c). Without any prior knowl-
edge, it is hard to choose an appropriate personalization vec-
tor for the PPR computation. Even though one can repeat-
edly compute the PPR with different personalization vec-
tors, how to aggregate and interpret all the different results
is not clear. On the other hand, our localized ranking method
computes the ranking per cluster instead of per node, which
provides an efficient and effective way to conduct a cluster-
level analysis.

To compare the differences between the global and the
localized ranking methods more systematically, we use the
notion of demotion which has been introduced in [12]. The
high-level idea is that we divide the nodes into 20 buck-
ets based on the global ranking, and measure how many
changes occur if we redivide the nodes according to the lo-
calized ranking. For each cluster, we sort the nodes accord-
ing to their global scores in descending order. In the first
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Fig. 4 Average demotion scores.

bucket, we assign nodes whose global scores sum up to 5%
of the total global score. Similarly, by considering the rest
of the nodes, we make the second bucket by assigning nodes
whose global scores sum up to 10% of the total global score.
In this way, we can divide the nodes into 20 buckets by their
global scores. Then, we consider a situation where we di-
vide the nodes based on the localized scores. For each node,
we compare the bucket number by its global score and its
localized score. For example, if a node is assigned to the
first bucket by the global score, but the node is assigned to
the 5th bucket by the localized score, then the node gets de-
moted four buckets. In this case, the demotion score of that
node is four. On the other hand, if a node is assigned to the
10th bucket by the global score, and the node is assigned
to the 7th bucket by the localized score, the node gets pro-
moted three buckets, and thus, the demotion score is −3.

For each cluster, we compute the average demotion
score of each bucket by averaging the demotion scores of all
the nodes assigned to the corresponding bucket. Figure 4 (a)
shows the average demotion score of each bucket for the
authority scores on our Facebook dataset. Since we cluster
the graph into 64 clusters, we have 64 plots. Among those,
we select the one with the maximum variance between the
global and localized authorities. Note that if there is not
much difference between the global and the localized au-
thorities, the demotion score should be close to zero. How-
ever, as we can see in Fig. 4 (a), the demotion scores we
got from our Facebook dataset are significantly greater than
(i.e., the nodes get demoted) or significantly less than zero
(i.e., the nodes get promoted), which indicates that there is a
huge difference between the global authorities and the local-
ized authorities. When we divide the nodes into 20 buckets,
we can just focus on the ranks of the nodes instead of their
scores. Now, we divide the nodes into 20 buckets based
on the ranks such that the first bucket contains the top 5%
of the nodes. Then, each bucket contains the same number
of nodes (note that when we divide the nodes based on the
scores, the number of nodes assigned to each bucket might
vary since the scores tend to follow a power-law distribu-
tion). Figure 4 (b) shows the results for the PageRank scores
on the Namuwiki dataset. We see that the demotion scores
are not close to zero, which indicates that there is a discrep-
ancy between the global ranking and the localized ranking.

We define the average difference of each bucket to be
the average of the absolute values of demotion scores (of the

Fig. 5 Average difference per bucket.

Fig. 6 Average difference per cluster.

nodes in each bucket) to measure the difference between the
global ranking and the localized ranking. We take the abso-
lute value of each demotion score because whether a node is
demoted or promoted is not our main focus. Figure 5 shows
the results. Similarly, we also define the average difference
of each cluster by considering the average of the absolute
values of demotion scores per cluster. Figure 6 shows the
results. In Fig. 5 and Fig. 6, we note that the average differ-
ences are significantly greater than zero. Also, we observe
that the difference between the global and localized ranking
is more significant for the authority scores than the PageR-
ank scores. Our experimental results indicate that the local-
ized ranking provides a different view from the traditional
global ranking methods, and thus can be utilized for various
practical applications in network analysis.

5. Conclusion and Future Work

We develop the localized ranking methods by extending the
traditional HITS and the PageRank algorithms. By exploit-
ing the inherent clustering structure of real-world networks,
we partition the networks into a set of densely connected
subgraphs, and extract each of the subgraphs where we com-
pute the localized ranking for the nodes included in the sub-
graph. Experimental results show that the localized ranking
methods result in different orderings of the nodes from the
traditional global ranking methods, and thus our methods
provide new insights on node ranking in network analysis.

We plan to extend our methods and analysis by consid-
ering the non-exhaustive, overlapping clustering [13]. Also,
we intend to incorporate our localized ranking methods into
recommender systems [14].
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